
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016, pp. 182-186
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

A Review on Optimization Techniques for
Test Case Generation

K P Yadav1, Saroj Patel2 and Tannu Arora3
1Director KCC Institute of Tech & Mgmt, Greater Noida

2,3Jodhpur National University, Jodhpur
E-mail: 1drkpyadav732@gmail.com, 2drsarojpatel@gmail.com, 3tannu.arora@gmail.com

Abstract—This paper summarizes a survey in the field of automated
software testing. The design of an appropriate test suite for software
testing is a challenging task. It requires a suitable tradeoff between
effectiveness, e.g., a sufficient amount of test cases to satisfy the test
goals of a given coverage criterion, and efficiency, e.g., a
redundancy-reduced selection of test cases. Recent test suite
optimization approaches, usually require an explicit enumeration of
existing test cases to select from. The test suite design for covering
entire software product is more problematic as dependency between
test cases, test goals and product configurations has to be taken into
account. Due to the exponential number of configurations with
respect to the number of features, an explicit enumeration of all
products for optimizing a product-line test suite is impartibly. There
have been few efforts on representing a brief classification, which
covers mostly used automatic test case generation approaches. In this
paper we introduce a general classification for automatic test case
generation approaches with comparison between these approaches to
show that model based testing is the most acceptable approach to
generate automatic test cases.

Keywords: Automated software testing; optimization approaches;
automatic test case generation; model based testing

1. INTRODUCTION

Automated software testing is a development in which
software tools execute pre-scripted tests on a software
application before it is released into production. Automated
testing tools are able of executing tests, reporting conclusions
and comparing results with previous test runs. Tests carried
out with these tools can be run repeatedly, at any time of day.
The method or process being used to put into practice
automation is called a test automation framework. Several
frameworks have been realized over the years by commercial
vendors and testing organizations. Automating tests with
commercial off-the-shelf (COTS) or open source software can
be complex, however, because they almost always necessitate
customization. In many organizations, automation is only put
into practiced when it has been resolute that the manual testing
program is not meeting prospect and it is not possible to bring
in more human testers.

2. REVIEW ON AUTOMATED SOFTWARE
TESTING

Researchers have proposed different techniques to generate
test case automatically. Software testing is the process of
executing a program in order to find faults. Testing is very
important, though expensive phase in software development
and maintenance; it has been estimated that software testing
entails between 30 percent and 50 percent of software
development. A test case is a set of tests performed in a
sequence and related to a test objective, which will produce a
number of tests comprising specific input values, observed
output, expected output, and any other information needed for
the test to run, such as environment prerequisites. There has
been a significant amount of work in automatic test case
generation that attempts to increase the amount of observed
behavior. There are different reasons to automate test case
generation task in software testing. Some of the most
important reasons are as follows.

 Reducing the cost of software testing
 Reducing human errors
 Increasing software products quality
 Reducing number of test cases
 Covering all system requirements

2.1 Selection of Correct Test Cases for Automation Testing

Automation does not overpower or replaces manual testing but
it compliments it. Like manual, automation too needs a
strategy with proper planning, monitoring & control.
Automation, when put into practiced correctly, can become an
asset to the team, project and ultimately to the organization.
There are many advantages of automation; here are few
important to mention:

 useful to execute the routine tasks like smoke tests and
regression tests.

 useful in preparing the test data.
 helps to execute the test cases which involve complex

business logic.

A Review on Optimization Techniques for Test Case Generation 183

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

 good to execute the cross platform test cases (like
different OS, browsers etc.)

 great to execute the test cases which are a bit difficult to
execute manually.

 when the number of iterations of the test case executions
are not known.

Many a time stakeholders feel that test automation acts as a
support tool for manual testing, so it’s vital to recognize that
automation is the best way to increase the effectiveness,
efficiency and coverage of testing. it not only saves time but
also improves accuracy as repetitive tasks via manual
approach can prone to human errors and can be time
consuming.

There are following steps to select test cases for automation of
software testing process:

Step 1:

Identify the parameters on which will be based on test case as
a candidate for automation.

 Test case executed with different set of data
 Test case executed with different browser
 Test case executed with different environment
 Test case executed with complex business logic
 Test case executed with different set of users
 Test case involves large amount of data
 Test case has any dependency
 Test case requires special data

Step 2:

Break each application into modules. for each module, analyze
and try to identify the test cases which should be automated
based on the parameters.

Step 3:

Consolidate and group the number of test cases for each
module preprocessing.

3. GENERAL CLASSIFICATION OF OPTIMIZING
TEST CASE TECHNIQUES

There has been a significant amount of work in automatic test
case generation that attempts to increase the amount of
observed behavior. Despite of these wide researches, there
have been few efforts on representing an classification, which
covers mostly used existing automatic test case generation
approaches. Fig. 1 shows the general classification of
optimizing techniques.

Fig. 1: Optimization Techniques

A comparison between these two approaches in terms of
algorithm (see Table 1).

Table 1: Comparison between Optimizing Techniques

Approach Real time
Application

Complexity Fault
Analysis

Model
Based

Yes High High

Search
Based

Depends on
Test Type

High Medium

3.1 Model Based Testing

Testing is a necessary, but time and resource overwhelming
activity in the software development process. Making a short,
but effective test suite typically needs a lot of manual work
and expert information. In a model-based process, among
other subtasks, test building and test execution can also be
partially automated. Model-based testing (MBT) aims at
automated, scalable, and systematic testing solutions for
complex industrial software systems[3].

Model-based testing is a software testing technique in which
the test cases are resulting from a model that describes the
functional features of the system under test. It makes use of a
model to generate tests that includes both offline and online.
The technical literature on model-based testing (MBT) offers
us several techniques with different characteristics and
goals[2]. Fig. 2 shows the basic components of MBT.

K P Yadav, Saroj Patel and Tannu Arora

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

184

Fig. 2: Model Based Testing

Model-based testing is based on some form of a model that
explains some aspects of the tested system in a way that
enable automatic test generation. Modeled is either the
system’s desired behavior, on some level of abstraction, or
alternatively testing strategies. When testing strategies are
modeled, they are from time to time modeled as probabilistic
processes. System models are usually not probabilistic[14].

Importance of Model-Based Testing

 Unit testing won’t be enough to check the functionalities.
 To make sure that the system is behaving in the same

sequence of actions.
 Model-based testing technique has been adopted as an

included part of the testing process.
 Commercial tools are urbanized to support model-based

testing.

3.2 Search-based[5,6] Automatic Test Case Generation

There are a variety of search algorithms to use for the purpose
of test case generation. This paper uses evolutionary
algorithms so we concentrate only on evolutionary algorithms.
EA’s describe the process of search, and allows us to carry out
the search and they allow us to find optimal solution.
Evolutionary algorithms

EA is a subset of evolutionary computation which is a subfield
of Artificial intelligence. Evolutionary computation is a
general term for several computational techniques. EC
represents powerful search and optimization influenced by
biological mechanisms of evolution. EAs refer to evolutionary
computation models using randomness and genetic inspired
operations. EAs involve selection, recombination, random
variation and competition of the individuals in a population of
adequately represented potential solutions. The potential
solutions are referred as chromosomes or individuals. The
evolutionary algorithms include Genetic Algorithms. Genetic
algorithm represents the main paradigm of evolutionary
computation.

3.2.1 Basics Of Genetic Algorithm (GA)[13]

The genetic algorithm is a method for solving both constrained
and unconstrained optimization problems that is based on

natural selection, the process that drives biological evolution.
The genetic algorithm repeatedly modifies a population of
individual solutions. at each step, the genetic algorithm selects
individuals at random from the current population to be
parents and uses them to produce the children for the next
generation. over successive generations, the population
"evolves" toward an optimal solution.

 The genetic algorithm can apply to solve a variety of
optimization problems that are not well suited for standard
optimization algorithms, including problems in which the
objective function is discontinuous, non differentiable,
stochastic, or highly nonlinear. The genetic algorithm can
address problems of mixed integer programming, where some
components are restricted to be integer-valued. The genetic
algorithm uses three main types of rules at each step to create
the next generation from the current population:

 Selection rules select the individuals, called parents that
contribute to the population at the next generation.

 Crossover rules combine two parents to form children for
the next generation.

 Mutation rules apply random changes to individual
parents to form children.

The genetic algorithm differs from a classical, derivative-
based, optimization algorithm in two main ways, as
summarized in Table 2[13].

Table 2: Comparison between Classical and Genetic Algorithm

Classical Algorithm Genetic Algorithm
Generates a single point at each
iteration. The sequence of
points approaches an optimal
solution.

Generates a population of
points at each iteration. The
best point in the population
approaches an optimal solution.

Selects the next point in the
sequence by a deterministic
computation.

Selects the next population by
computation which uses
random
number generators.

4. PERFORMANCE EVALUATION

Model based testing is gaining importance due to highest fault
finding power. MBT approach generally generate large sets of
test cases when applied to the real systems, regardless of the
coverage criteria. All the test cases can be automated using
model generated.

Genetic algorithms is also used for generating test case
automation. These algorithms used genetic trees to optimize
test cases from which fault analysis had been made using
mutation testing. The effectiveness of test cases can be
evaluated using a fault injection technique called mutation
analysis.

Mutation testing[1] is a process by which faults are injected
into the system to verify the efficiency of the test cases.
Mutation-based analysis is a fault based testing strategy that
starts with a program to be tested and makes numerous small

A Review on Optimization Techniques for Test Case Generation 185

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

syntactic changes into the original program. Program with
injected faults are inserted and tested in the respective manner.
If a test case set is capable of causing behavioral differences
between original program and mutant, mutant is considered as
killed by test. The product of mutation analysis is a measure
called mutation score, which indicated the percentage of
mutants killed by a test set. Mutation analysis was conducted
by inducing errors into the system to check for the fault
analysis. Mutation analysis score was calculated as:

Mutation analysis score= No of fault found/no of fault injected

The percentage of mutation score had been calculated by
performing different experiments. Experimental results
showed that fault analysis done from genetic algorithms test
case generation method is 80.3%while using model based
testing score is 91.6% (see Fig. 3).

Fig. 3: Fault Analysis

From the experimental results, we conclude that model based
methodology is useful to generate test cases. This technique
although highly reliable and finds more faults, there are few
drawbacks of this i.e., Designing the model is complex and
needs skilled resources and the initial time taken to setup and
understand the system to design the model is huge.

The issues can be overcome if we combine the GA technique
with the MBT to give better results and robustness.

5. CONCLUSION

One critical task in software testing is to generate test cases.
Since, test case generation has become an optimization
problem hence scope remains open to apply some more
techniques to achieve better results. Genetic algorithm for

optimization of test cases has low fault finding power
whereas, model based approach is not suitable to handle the
large and complex system. This approach is very much
suitable for simple systems where no more fork-joins, like
nested-fork joins and etc. are involved, which is our next
objective. However this approach is not sufficient to handle
different kind of errors such as work flow errors, state based
errors and etc. To overcome this bottleneck, a combined
approach has to be develop for better optimization of test case
generation. Although there have been lots of researches for
optimization of software testing ,but for real time applications
more researches are still needed.

REFERENCES

[1] MOGHADAM, M.H. ,BABAMIR, S.M.,MUTATION SCORE
EVALUATION IN TERMS OF OBJECT-ORIENTED
METRICS, IEEE 4TH INTERNATIONAL CONFERENCE ON
COMPUTER AND KNOWLEDGE ENGINEERING,PP. 775-
780,(2014)

[2] Arilo Claudio Dias-Neto, Guilherme Horta Travassos,
"Supporting the Combined Selection of Model-Based Testing
Techniques", IEEE Transactions on Software Engineering,
vol.40, no. 10, pp. 1025-1041,(2014)

[3] Shaukat Ali, Muhammad Zohaib Iqbal, Andrea Arcuri, Lionel C.

Briand, "Generating Test Data from OCL Constraints with Search
Techniques", IEEE Transactions on Software Engineering,
vol.39, no. 10, pp. 1376-1402(2013)

[4] L. Padgham, Zhiyong Zhang, J. Thangarajah, T. Miller, "Model-

Based Test Oracle Generation for Automated Unit Testing of
Agent Systems", IEEE Transactions on Software Engineering,
vol.39, no. 9, pp. 1230-1244,(2013)

[5]M. Harman, A. Mansouri, and Y. Zhang, "Search Based Software
Engineering: Trends, Techniques and Applications," ACM
Computing Surveys, vol. 45, article 11,(2012)

[6]M. Phil, "Input Domain Reduction through Irrelevant Variable
Removal and Its Effect on Local, Global, and Hybrid Search-
Based Structural Test Data Generation," IEEE Trans. Software
Eng., vol. 38, no. 2, pp. 453-477, (2012)

[7]S. Ali, L.C. Briand, and H. Hemmati, "Modeling Robustness
Behavior Using Aspect-Oriented Modeling to Support
Robustness Testing of Industrial Systems," Software and Systems
Modeling, vol. 11, pp. 633-670, (2012)

[8] A.Arcuri, M.Z. Iqbal, and L. Briand, "Random Testing:
Theoretical Results and Practical Implications," IEEE Trans.
Software Eng., vol. 38, no. 2, pp. 258-277,(2012)

[9] C.D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and M.

Luck, "Evolutionary Testing of Autonomous Software Agents,"
Autonomous Agents and Multi-Agent Systems, vol. 25, no. 2, pp.
260-283, (2012)

[10] W.L. Andrade, D.R. Almeida, J.B. Candido, and P.D.L.
Machado, "SYMBOLRT: A Tool for Symbolic Model-Based
Test Case Generation for Real-Time Systems," Proc. 19th Tools
Session of the Third Brazilian Conf. Software: Theory and
Practice, pp. 31-37, (2012)

 [11] Model Development Tools,
 http://www.eclipse.org/modeling/mdtproject=ocl,(2012)

74

76

78

80

82

84

86

88

90

92

94

Genetic Algorithm Model Based Testing

Mutation Score

K P Yadav, Saroj Patel and Tannu Arora

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

186

[12] G. Fraser and A. Arcuri, "EvoSuite: Automatic Test Suite
Generation for Object-Oriented Software," Proc. ACM Symp.
Foundations of Software Eng., pp. 416-419, (2011)

[13] http://in.mathworks.com/help/gads/what-is-the-genetic-
algorithm.html

[14] http://www.conformiq.com/model-based-testing

